Microfluidics co-culture systems for studying tooth innervation

نویسندگان

  • Pierfrancesco Pagella
  • Estrela Neto
  • Lucia Jiménez-Rojo
  • Meriem Lamghari
  • Thimios A. Mitsiadis
چکیده

Innervation plays a key role in the development and homeostasis of organs and tissues of the orofacial complex. Among these structures, teeth are peculiar organs as they are not innervated until later stages of development. Furthermore, the implication of neurons in tooth initiation, morphogenesis and differentiation is still controversial. Co-cultures constitute a valuable method to investigate and manipulate the interactions of nerve fibers with their target organs in a controlled and isolated environment. Conventional co-cultures between neurons and their target tissues have already been performed, but these cultures do not offer optimal conditions that are closely mimicking the in vivo situation. Indeed, specific cell populations require different culture media in order to preserve their physiological properties. In this study we evaluate the usefulness of a microfluidics system for co-culturing mouse trigeminal ganglia and developing teeth. This device allows the application of specific media for the appropriate development of both neuronal and dental tissues. The results show that mouse trigeminal ganglia and teeth survive for long culture periods in this microfluidics system, and that teeth maintain the attractive or repulsive effect on trigeminal neurites that has been observed in vivo. Neurites are repealed when co-cultured with embryonic tooth germs, while postnatal teeth exert an attractive effect to trigeminal ganglia-derived neurons. In conclusion, microfluidics system devices provide a valuable tool for studying the behavior of neurons during the development of orofacial tissues and organs, faithfully imitating the in vivo situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices.

Innervation plays a key role in the development, homeostasis and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected. Several in vivo studies have provided important information about the patterns of innervation of dental tissues during develo...

متن کامل

Transfection of molecular beacons in microchannels for single-cell gene-expression analysis.

BACKGROUND Efficient transfection of molecular beacons has to be performed in the microscale in order to fully utilize the potential of molecular beacons and microfluidics for studying the real-time gene-expression dynamics in living cells. Nevertheless, there has been relatively little study on transfection of molecular beacons in microfluidic channels. RESULTS In this work, the differences ...

متن کامل

Design of biomimetic cellular scaffolds for co-culture system and their application

The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment ...

متن کامل

A rapid co-culture stamping device for studying intercellular communication

Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temp...

متن کامل

A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions

Bidirectional molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. The molecular mechanisms underlying such communication are of keen interest and could provide new targets for intervention in motoneuron disease. Here, we developed a microfluidic platform with motoneuron cell bodies on one side and muscle cells on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014